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In any triangle ABC, prove that
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Solution by Arkady Alt, San Jose, California, USA.

Let r and s be, respectively, inradius and semiperimeter of ABC.
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Let a,b,c be sidelengths of some triangle T with correspondent angles ,,

and let R, r, s be, respectively, circumradius, inradius and semiperimeter of

this triangle (R, r, s are local notations here for new triangle T).
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Since R  2r (Euler’s Inequality) we have
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